Caenorhabditis elegans orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator.

نویسندگان

  • J A Powell-Coffman
  • C A Bradfield
  • W B Wood
چکیده

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, until now described only in vertebrates, that mediates many of the carcinogenic and teratogenic effects of certain environmental pollutants. Here, we describe orthologs of AHR and its dimerization partner AHR nuclear translocator (ARNT) in the nematode Caenorhabditis elegans, encoded by the genes ahr-1 and aha-1, respectively. The corresponding proteins, AHR-1 and AHA-1, share biochemical properties with their mammalian cognates. Specifically, AHR-1 forms a tight association with HSP90, and AHR-1 and AHA-1 interact to bind DNA fragments containing the mammalian xenobiotic response element with sequence specificity. Yeast expression studies indicate that C. elegans AHR-1, like vertebrate AHR, requires some form of post-translational activation. Moreover, this requirement depends on the presence of the domains predicted to mediate binding of HSP90 and ligand. Preliminary experiments suggest that if AHR-1 is ligand-activated, its spectrum of ligands is different from that of the mammalian receptor: C. elegans AHR-1 is not photoaffinity labeled by a dioxin analog, and it is not activated by beta-naphthoflavone in the yeast system. The discovery of these genes in a simple, genetically tractable invertebrate should allow elucidation of AHR-1 function and identification of its endogenous regulators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The AHR-1 aryl hydrocarbon receptor and its co-factor the AHA-1 aryl hydrocarbon receptor nuclear translocator specify GABAergic neuron cell fate in C. elegans.

The aryl hydrocarbon receptors (AHR) are bHLH-PAS domain containing transcription factors. In mammals, they mediate responses to environmental toxins such as 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD). Such functions of AHRs require a cofactor, the aryl hydrocarbon receptor nuclear translocator (ARNT), and the cytoplasmic chaperonins HSP90 and XAP2. AHR homologs have been identified througho...

متن کامل

Aryl hydrocarbon receptor (AhR)/AhR nuclear translocator (ARNT) activity is unaltered by phosphorylation of a periodicity/ARNT/single-minded (PAS)-region serine residue.

The aryl hydrocarbon nuclear translocator (ARNT) protein belongs to the family of basic helix-loop-helix (HLH)-periodicity/ARNT/single-minded [Per/ARNT/Sim (PAS)] transcription factors and regulates a range of cellular processes by either homodimerizing or heterodimerizing with other basic HLH-PAS proteins. To date, it has been shown that both the HLH and PAS domains are required for aryl hydro...

متن کامل

The basic helix-loop-helix-PAS protein ARNT functions as a potent coactivator of estrogen receptor-dependent transcription.

The biological effects of estrogens are mediated by the estrogen receptors ERalpha and ERbeta. These receptors regulate gene expression through binding to DNA enhancer elements and subsequently recruiting factors such as coactivators that modulate their transcriptional activity. Here we show that ARNT (aryl hydrocarbon receptor nuclear translocator), the obligatory heterodimerization partner fo...

متن کامل

Identification of residues in the N-terminal PAS domains important for dimerization of Arnt and AhR

The basic helix-loop-helix (bHLH).PAS dimeric transcription factors have crucial roles in development, stress response, oxygen homeostasis and neurogenesis. Their target gene specificity depends in part on partner protein choices, where dimerization with common partner Aryl hydrocarbon receptor nuclear translocator (Arnt) is an essential step towards forming active, DNA binding complexes. Using...

متن کامل

A novel nonconsensus xenobiotic response element capable of mediating aryl hydrocarbon receptor-dependent gene expression.

The aryl hydrocarbon receptor (AhR) is a mediator of xenobiotic toxicity, best recognized for conveying the deleterious effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure. The AhR functions as a ligand-activated transcription factor that binds to a canonical xenobiotic response element (XRE) in association with the heterodimerization partner, the AhR nuclear translocator (Arnt) prot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 6  شماره 

صفحات  -

تاریخ انتشار 1998